
ADSICS 
Anomaly Detection System for Industrial Control Systems

SDMay22-38 : Alex Nicolellis, Muhamed Stilic, Pallavi Santhosh, Jung Ho Suh
Client : Dr. Manimaran Govindarasu

Advisors : Dr. Manimaran Govindarasu, Moataz Abdelkhalek



Problem Statement

● Attacks on power distribution companies are now more common due to the 
increased use of IoT devices and the lack of security on power grid systems. 

● ADSICS is a surveillance program that detects and prevents cyber attacks using 
anomaly detection.



Conceptual Sketch



Requirements & Constraints
Functional Requirements:
• Use machine learning to detect network anomalies
• Verify incoming alerts and discard false positives
• Display alerts for easy human understanding
• Present temporal and spatial details for each alert

Non-Functional Requirements:
• Alerts should be presented intuitively
• Alerts should be received within 10ms
• The system should be able to handle a large volume of alerts
• The system should be reliable and maintain uptime continuously

Constraints:
• The anomaly detection must use SecurityOnion tools (specifically Elasticsearch)



Standards
Standard Application Justification

IEEE 692-2013 IADS SENSOR

IADS MASTER

Addresses cybersecurity and control related equipment requirements for threat 
assessment.

ISO IEC 27039-2015 IADS MASTER Provides guidelines for selection, deployment, and operations of intrusion detection 
system detection and prevention systems.

ISO/IEC 27017:2015 CLOUD SERVER Provides guidance on the information security aspects of cloud computing, 
recommending the implementation of cloud-specific information security controls that 
supplement the guidance of the ISO/IEC 27002 and ISO/IEC 27001 standards.

IEEE 1711.2-2019 IADS SENSOR Protects communication of intelligent devices in the power industry.

IEEE 802 IADS SENSOR Describes recommended practices for communication over various types of networks, 
such as wireless networks.



Market Survey
● Previous work by client - D-IDS for Cyber-Physical DER Modbus System

● Datasets: KDD, IDS, NSL+KDD, IoT23

● Anomaly detection algorithms:

○ Decision Tree

○ Random Forest

○ K-Nearest Neighbor 

○ Support Vector Machine

○ Deep Neural Network



Functional Decomposition: 

IADS Sensor, IADS Master

Operating System:

Kali Linux, Linux(SO), and Windows XP

Software Architecture:

• vSphere - virtual machine
• SecurityOnion 

• ElasticSearch - machine learning
• Kibana - visualization
• SNORT - filtering

System Architecture



IADS Sensor



IADS Master



Detailed Diagram
• Our design accepts many alerts as input, originating from a 

variety of sensors

• These alerts will be processed, ensuring that they enter the 
anomaly detection system

• Then, our algorithm will perform alert correlation through 
the Cloud 

• Our machine learning model will be trained by a dataset to 
draw relationships between alerts

• The conclusions will then be visualized for user analysis



Prototype Implementations



IADS Master Dashboard



Visualizing Alerts in Kibana

https://blog.securityonion.net/2017/06/towards-elastic-on-security-onion.html

https://blog.securityonion.net/2017/06/towards-elastic-on-security-onion.html


NSL - KDD Dataset

Classification of the data



 



Testing and Evaluation
• Testing is performed on the actual platform (Client VM)

• Functional testing

• JUnit, Mockito - UI testing

• Visualization testing

• Security evaluation

• Black box testing - Low false positive, false negative rate

• Timing evaluation

• Real-time operation



Design Complexity
● Our design required understanding of advanced technical concepts such as 

anomaly detection, network intrusion, and machine learning algorithms. Since 
none of us had any background in cybersecurity, this caused us to spend an 
unexpected amount of time conducting background research.
○ The required testbed environment was unreliable.

● Design iterations needed:
○ Local implementation vs testbed implementation
○ Datasets
○ Algorithms
○ Single Sensor



Project Plan – Milestones
● Filter and track alerts through spatial and temporal data

● Accept continuous alerts from the sensor VMs

● Build a UI to display tracked anomaly data intuitively

● Process every alerts in 10 ms delay for real time operation

● Eliminate false positives with 90% accuracy 



Next Steps Spring 2022



Conclusion
We aim to use a machine learning algorithm within our VM to process alerts, 
ensuring that they contain all the necessary information such as time, location, 
severity, and type to be analyzed by a user. We will go into the future of this 
project with the ultimate goal of designing a user experience that emphasizes 
accuracy, speed, and utility.



Any Questions?
Thank You For Your Time!



References
Slide 13 Image
https://blog.securityonion.net/2017/06/towards-elastic-
on-security-onion.html 

https://blog.securityonion.net/2017/06/towards-elastic-on-security-onion.html
https://blog.securityonion.net/2017/06/towards-elastic-on-security-onion.html

